3D Printing in Periodontics - A Review
Abstract
The restoration of the lost periodontium, including its soft and hard components, is the main goal of regenerative periodontal therapy. Three-dimensional (3D) printing technology permits the fabrication of an individualized 3D object based on a material of choice, a specific computer-aided design and accurate manufacturing. 3D printing finds use in a variety of industries, such as aerospace, defence, art & design, medicine, and dentistry. 3D printing is one of the most talked-about technological advancements in dentistry, and they have greatly simplified the planning and execution of dental procedures. The application of 3D printing in the regeneration of lost periodontal tissues represents a novel approach that facilitates optimal cell interactions and promotes the successful regeneration of biological tissues. 3D printing has been modified to print biocompatible materials and living cells to minimize any potential compromise on cell viability.
References
2. Ma, Y., Xie, L., Yang, B., Tian, W., 2019. Three-dimensional printing biotechnology for the regeneration of the tooth and tooth supporting tissues. Biotechnol. Bioeng. 116, 452–468.
3. Carter, S.-S.-D., Costa, P.F., Vaquette, C., Ivanovski, S., Hutmacher, D.W., Malda, J., 2017. Additive biomanufacturing: an advanced approach for periodontal tissue regeneration. Ann. Biomed. Eng. 45, 12–22.
4. Oberoi, G., Nitsch, S., Edelmayer, M., Janjic, K., Muller, A.S., Agis, H., 2018. 3D printing-encompassing the facets of dentistry. Front. Bioeng. Biotechnol. 6, 172. https://doi.org/10.3389/fbioe.2018. 00172.
5. Asa’ad, F., Pagni, G., Pilipchuk, S.P., Giannı, A.B., Giannobile, W.V., Rasperini, G., 2016. 3D-Printed Scaffolds and biomaterials: review of alveolar bone augmentation and periodontal regeneration applications. Int. J. Dent. 2016, 1239842.
6. Visser J, Peters B, Burger TJ, Boomstra J, Dhert WJ, Melchels FP, et al. Biofabrication of multi-material anatomically shaped tissue con structs. Biofabrication. 2013; 5(3): 35007.
7. Chang, R., Nam, J., & Sun, W. (2008). Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication‐based direct cell writing. Tissue Engineering. Part A, 14,41–48.
8. Athirasala, A, Tahayeri, A., Thrivikraman, G., França, C. M., Monteiro, N., Tran, V., … Bertassoni, L. E. (2017). A dentin‐derived hydrogel bioink for 3D bioprinting of cell‐laden scaffolds in regenerative dentistry. Biofabrication, 10, 024101.
9. Michael, S., Sorg, H., Peck, C. T., Koch, L., Deiwick, A., Chichkov, B., Reimers, K. (2013). Tissue engineered skin substitutes created by laser‐assisted bioprinting form skin‐like structures in the dorsal skin fold chamber in mice. PLOS One, 8, 2013.
10. Soman, P., Chung, P. H., Zhang, A. P., & Chen, S. (2013). Digital microfabrication of user‐defined 3D microstructures in cell‐laden hydrogels. Biotechnology and Bioengineering, 110, 3038–3047.
11. Liao, Y., Song, J., Li, E., Luo, Y., Shen, Y., Chen, D., Midorikawa, K. (2012). Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing. Lab on a Chip, 12, 746–749.
12. Doraiswamy, A., Narayan, R. J., Lippert, T., Urech, L., Wokaun, A., Nagel, M., Chrisey, D. B. (2006). Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer. Applied Surface Science, 252, 4743–4747.
13. Chia HM, Wu BM Recent advances in 3D printing of biomaterials. J Biol Eng 2015; 9(4): 1–14.
14. Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415
15. Bottino, M.C.; Kamocki, K.; Yassen, G.H.; Platt, J.A.; Vail, M.M.; Ehrlich, Y.; Spolnik, K.J.; Gregory, R.L. Bioactive nanofibrous scaffolds for regenerative endodontics. J. Dent. Res. 2013, 92, 963–969.
16. Bottino, M.C.; Arthur, R.A.; Waeiss, R.A. Biodegradable nanofibrous drug delivery systems: Effects of metronidazole and ciprofloxacin on periodontopathogens and commensal oral bacteria. Clin. Oral Investig. 2014, 18, 2151–2158.
17. Park CH, Kim KH, Rios HF, Lee YM, Giannobile WV, Seol YJ. Spatiotemporally controlled microchannels of periodontal mimic scaffolds. J Dent Res. 2014 Dec;93(12):1304-12.
18. Kacarevic, Z.P., Rider, P.M., Alkildani, S., Retnasingh, S., Smeets, R., Jung, O., Ivanisevic, Z., Barbeck, M., 2018. An introduction to 3D bioprinting: possibilities. Challenges Future Aspects. Mater. (Basel) 11.
19. Fahmy, M.D.; Jazayeri, H.E.; Razavi, M.; Masri, R.; Tayebi, L. Three Dimensional Bioprinting Materials with Potential Application in Preprosthetic Surgery. J. Prosthodont. O. J. Am. Coll. Prosthodont. 2016, 25, 310–318.
20. Ceccarelli, G.; Presta, R.; Benedetti, L.; Cusella De Angelis, M.G.; Lupi, S.M.; Rodriguez, Y.B.R. Emerging Perspectives in Scaffold for Tissue Engineering in Oral Surgery. Stem Cells Int. 2017, 2017, 4585401.
21. Obregon, F., Vaquette, C., Ivanovski, S., Hutmacher, D. W., & Bertassoni, L. E. (2015). Three‐dimensional bioprinting for regenerative dentistry and craniofacial tissue engineering. Journal of Dental Research, 94, 143S–152SS.
22. Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer-polycaprolactone in the 21st century. Progress in Polymer Science, 35(10), 1217–1256.
23. Wubneh, A.; Tsekoura, E.K.; Ayranci, C.; Uluda˘ g, H. Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomater. 2018, 80, 1–30.
24. Chocholata, P.; Kulda, V.; Babuska, V. Fabrication of Scaff olds for Bone-Tissue Regeneration. Materials 2019, 12, 568.
25. Gopinathan, J.; Noh, I. Recent trends in bioinks for 3D printing. Biomater. Res. 2018, 22, 11.
26. Kaur n, groverd, kaurg, future dental device -3 dimensional printing approach in dentistry ipint.jmaxillofac imaging 2021;7(2):37-47
27. Won JY, Park CY, Bae JH, Ahn G, Kim C, Lim DH, Cho DW, Yun WS, Shim JH, Huh JB. Evaluation of 3D printed PCL/PLGA/β-TCP versus collagen membranes for guided bone regeneration in a beagle implant model. Biomed Mater. 2016 Oct 7;11(5):055013.
28. Ausenda F, Rasperini G, Acunzo R, Gorbunkova A, Pagni G. New perspectives in the use of biomaterials for periodontal regeneration. Materials. 2019; 12(13): 2197.
29. Carrel JP, Wiskott A, Moussa M, Rieder P, Scherrer S, Durual S. A 3D printed TCP/HA structure as a new osteoconductive scaffold for vertical bone augmentation. Clin Oral Implants Res. 2016; 27(1): 55-62.
30. Dawood, A., Marti, B., Sauret-Jackson, V., Darwood, A., 2015. 3D printing in dentistry. Br. Dent. J. 219, 521–529.
31. Carrel JP, Wiskott A, Moussa M, Rieder P, Scherrer S, Durual S. A 3D printed TCP/HA structure as a new osteoconductive scaffold for vertical bone augmentation. Clin Oral Implants Res. 2016 Jan;27(1):55-62. doi: 10.1111/clr.12503. Epub 2014 Oct 28.
32. Baba, S., Hashimoto, Y., Inoue, T., Kimura, D., Sumikura, S., Sonoda, Y., 2011. Evaluation of a 3-D, woven-fabric, composite Scaffold using experimental canine models of bone defects in mandibles. J. Oral Tissue Eng., 212–221
33. Park, C.H.; Rios, H.F.; Jin, Q.; Bland, M.E.; Flanagan, C.L.; Hollister, S.J.; Giannobile, W.V. Biomimetic hybrid scaffolds for engineering human tooth ligament interfaces. Biomaterials 2010, 31, 5945–5952.
34. Vaquette, C.; Fan, W.; Xiao, Y.; Hamlet, S.; Hutmacher, D.W.; Ivanovski, S. A biphasic scaffold design combined with cell sheet technology for simultaneous regeneration of alveolar bone/periodontal ligament complex. Biomaterials 2012, 33, 5560–5573
35. Lee, C.H., Hajibandeh, J., Suzuki, T., Fan, A., Shang, P., &Mao, J. J. (2014). Three‐dimensional printed multiphase scaffolds for regeneration of periodontium complex. Tissue Engineering. Part A, 20, 1342–1351.
36. Gul M, Arif A, Ghafoor R. Role of three-dimensional printing in periodontal regeneration and repair: Literature review. Journal of Indian Society of Periodontology. 2019 Nov;23(6):504.
37. Oberoi, G., Nitsch, S., Edelmayer, M., Janjic, K., Muller, A.S., Agis, H., 2018. 3D printing-encompassing the facets of dentistry. Front. Bioeng. Biotechnol. 6, 172. https://doi.org/10.3389/fbioe.2018. 00172.
38. Goh BT, Teh LY, Tan DB, Zhang Z, Teoh SH. Novel 3D polycaprolactone scaffold for ridge preservation-a pilot randomized controlled clinical trial. Clin Oral Implants Res 2015;26(3):271-7.
39. Park CH, Kim KH, Rios HF, Lee YM, Giannobile WV, Seol YJ. Spatiotemporally controlled microchannels of periodontal mimic scaffolds. J Dent Res. 2014 Dec;93(12):1304-12.
40. Rasperini G, Pilipchuk SP, Flanagan CL, Park CH, Pagni G, Hollister SJ, Giannobile WV. 3D-printed Bioresorbable Scaffold for Periodontal Repair. J Dent Res. 2015;94(9 Suppl):153S-7S.
41. Mangano, C., Barboni, B., Valbonetti, L., Berardinelli, P., Martelli, A., Muttini, A., Bedini, R., Tete, S., Piattelli, A., Mattioli, M., 2015. In vivo behavior of a custom-made 3D synthetic bone substitute in sinus augmentation procedures in sheep. J. Oral Implantol. 41, 240–250.
42. Ciocca L, Ragazzini S, Fantini M, Corinaldesi G, Scotti R. Work flow for the prosthetic rehabilitation of atrophic patients with a minimal-intervention CAD/CAM approach. J Prosthet Dent. 2015; 114:22 6.
43. D’haese J, Ackhurst J, Wismeijer D, De Bruyn H, Tahmaseb A. Current state of the art of computer guided implant surgery. Periodontol 2000 2017;73:121-33
44. Mijiritsky, E.; Ben Zaken,H.; Shacham, M.; Cinar, I.C.; Tore, C.;Nagy, K.; Ganz, S.D. Variety of Surgical Guides and Protocols for Bone Reduction Prior to Implant Placement: A Narrative Review. Int. J. Environ. Res. Public Health 2021, 18,2341
45. Murphy, S.V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32, 773–785.
46. Chakraborty C, Madhuri G, Sharma N, Ranjan S, Ade S, Pusa D. Glimpse of 3D Printing in Dentistry: A Review. J Adv Med Dent Scie Res 2021;9(6):127 130
47. Salah, M.; Tayebi, L.; Moharamzadeh, K.; Naini, F.B. Three-dimensional bio printing and bone tissue engineering: Technical innovations and potentional applications in maxillofacial reconstructive surgery. Maxillofac. Plast. Reconstr. Surg. 2020, 42, 18.