A Comprehensive Review of Surface Coatings for enhancement of Anti-Microbial and Anti-Corrosive Properties of Titanium Implant Surface

A Comprehensive Review of Surface Coating of Titanium Implant Surface

  • Ankita Singh Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University
  • Abhishek Sarkar Faculty of Dental Sciences, IMS, Banaras Hindu University
  • Suresh Shri Pokarram Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University
  • T P Chaturvedi Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University
Keywords: Titanium, Biomaterial, Dental Implant, Surface Modification, Surface Coating


Dental implants have revolutionized the field of restorative dentistry, providing a durable and long-lasting solution for replacing missing teeth. Among various biomaterials, titanium has proven to be the most suitable material for dental implants because of its incredible biocompatibility, mechanical properties, and unique surface characteristics. This scientific write-up reviews the comprehensive overview of various surface modification techniques employed to improve the osseointegration, antimicrobial properties, surface topography, and anti-corrosion behavior of titanium as a dental implant biomaterial, highlighting its role in improving implant success rates and long-term clinical outcomes

Author Biographies

Ankita Singh, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University

Associate Professor

Abhishek Sarkar, Faculty of Dental Sciences, IMS, Banaras Hindu University

Junior Resident

Suresh Shri Pokarram, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University

Junior Resident

T P Chaturvedi, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University



1) Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants - A review. Prog Mater Sci. 2009;54(3):397-425.
2) Guo Y, Zhou L, Zhang W, et al. Enhancement of bioactivity of a micro-arc oxidized titanium implant with a nanotopographic surface: an in vitro study. Int J Nanomedicine. 2014;9:2843-2855.
3) Park J, Bauer S, Schmuki P, von der Mark K. Narrow window in nanoscale dependent activation of endothelial cell growth and differentiation on TiO2 nanotube surfaces. Nano Lett. 2009;9(9):3157-3164.
4) Olivares-Navarrete R, Raz P, Zhao G, et al. Integrin alpha2beta1 plays a critical role in osteoblast response to micron-scale surface structure and surface energy of titanium substrates. Proc Natl Acad Sci U S A. 2008;105(41):15767-15772.
5)Shi Z, Huang X, Cai Y, Tang R. Biomimetic Nanosheet-Coated Ti with Enhanced In Vivo Osteointegration and Antibacterial Property. ACS Appl Mater Interfaces. 2017;9(39):33424-33432.
6)Klein CP, Patka P, Wolke JG, de Blieck-Hogervorst JM, van der Lubbe HB, de Groot K. Long-term in vivo study of porous pure titanium (pTi) implants. Biomaterials. 1998;19(5):435-439.
7)Hu X, Neoh KG, Zhang J, Kang ET. Protein-functionalized polymer brushes on Ti surfaces: surface characterization and in vitro human osteoblasts compatibility. Biomaterials. 2004;25(17):4215-4227.
8)Ivanova EP, Hasan J, Webb HK, et al. Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by cicada wings. Small. 2012;8(16):2489-2494.
9) D. Campoccia, L. Montanaro, C.R. Arciola, The significance of infection related to orthopedic devices and issues of antibiotic resistance, Biomaterials 27 (2006) 2331–2339, https://doi.org/10.1016/j.biomaterials.2005.11.044

10) Mei S, Cai Y, Wang L, et al. Nanostructured titanium enhances osseointegration via bactericidal effect under osteoporotic conditions. Biol Trace Elem Res. 2019;191(2):326-334.
11) Wang X, Wu H, Liu L, Zhang W, Chen J, Wang L. The hemocompatibility, antibacterial activity, and corrosion resistance of titanium treated by hydrogen peroxide plasma immersion ion implantation and deposition. Appl Surf Sci. 2017;404:108-116.
12) Wennerberg A, Albrektsson T. On implant surfaces: a review of current knowledge and opinions. Int J Oral Maxillofac Implants. 2010;25(1):63-74.
13) Huth KC, Saugspier M, Cappello C, et al. Corrosion susceptibility of dental titanium implants. Clin Oral Implants Res. 2018;29(9):900-908.
14) Liu Y, He J, Chen L, et al. Recent advances in surface modification techniques for titanium-based dental implants. J Nanomater. 2015;2015:381759.
15) Wang Q, Zhou P, Liu S, Attarilar S, Ma RL, Zhong Y, Wang L. Multi-Scale Surface Treatments of Titanium Implants for Rapid Osseointegration: A Review. Nanomaterials (Basel). 2020 Jun 26;10(6):1244. doi: 10.3390/nano10061244. PMID: 32604854; PMCID:PMC7353126.
16) Napoli, A.;Wieland, M.; Textor, M.; Spencer, N.D. Comparative investigation of the surface properties of commercial titanium dental implants. Part I: Chemical composition. Mater. Sci. Mater. Med. 2002, 13, 535–548.
17) Zinger, O.; Anselme, K.; Denzer, A.; Habersetzer, P.;Wieland, M.; Jeanfils, J. Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. Biomaterials 2004, 25, 2695–2711
18) Nagasawa, M.; Cooper, L.F.; Ogino, Y.; Mendonca, D.; Liang, R. Topography influences adherent cell regulation of osteoclastogenesis topography influences adherent cell regulation of osteoclastogenesis. J. Dent. Res. 2015, 95, 319–326.
19) Ziebart, T.; Schnell, A.; Walter, C. Interactions between endothelial progenitor cells (EPC) and titanium implant surfaces. Clin. Oral Investig. 2013, 17, 301–309.
20) Lagonegro, P.; Trevisi, G.; Nasi, L.; Parisi, L.; Manfredi, E. Osteoblasts preferentially adhere to peaks on micro-structured titanium Osteoblasts preferentially adhere to peaks on micro-structured titanium. Dent. Mater. 2018, 37, 278–285.
21) Wang, X.; Wang, Y.; Bosshardt, D.D.; Miron, R.J.; Zhang, Y. The role of macrophage polarization on fibroblast behavior-an in vitro investigation on titanium surfaces. Clin. Oral Investig. 2017, 22, 847–857.
22) Zhang, J.; Liu, J.;Wang, C.; Chen, F.;Wang, X.; Lin, K. A comparative study of the osteogenic performance between the hierarchical micro/submicro-textured 3D-printed Ti6Al4V surface and the SLA surface. Bioact. Mater. 2020, 5, 9–16.
23) Donos, N.; Horvath, A.; Mezzomo, L.A.; Dedi, D.; Calciolari, E.; Mardas, N. The role of immediate provisional restorations on implants with a hydrophilic surface: A randomised, single-blind controlled clinical trial. Clin. Oral Implants Res. 2018, 29, 55–66.
24) Shibli, J.A.; Eduardo, C.; Preshaw, P.M. Efficacy of standard (SLA) and modified sandblasted and acid-etched (SLActive) dental implants in promoting immediate and/or early occlusal loading protocols: A systematic review of prospective studies. Clin. Oral Implants Res. 2015, 26, 359–370.
25) Vasak, C.; Busenlechner, D.; Schwarze, U.Y.; Leitner, H.F.; Guzon, F.M.; Hefti, T.; Schlottig, F.; Gruber, R. Early bone apposition to hydrophilic and hydrophobic titanium implant surfaces: A histologic and histomorphometric study in minipigs. Clin. Oral Implants Res. 2014, 25, 1378–1385.
26) Alfarsi, M.A.; Hamlet, S.M.; Ivanovski, S. Titanium surface hydrophilicity modulates the human macrophage inflammatory cytokine response. J. Biomed. Mater. Res. Part A 2014, 102, 60–67.
27) Wennerberg, A.; Jimbo, R.; Stübinger, S.; Obrecht, M.; Dard, M.; Berner, S. Nanostructures and hydrophilicity influence osseointegration: A biomechanical study in the rabbit tibia. Clin. Oral Implants Res. 2014, 25, 1041–1050.
28) Lang, N.P.; Salvi, G.E.; Huynh-Ba, G.; Ivanovski, S.; Donos, N.; Bosshardt, D.D. Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin. Oral Implants Res. 2011, 22, 349–356.
29) Karabuda, Z.C.; Abdel-Haq, J.; Arisan, V. Stability, marginal bone loss and survival of standard and modified sand-blasted, acid-etched implants in bilateral edentulous spaces: A prospective 15-month evaluation. Clin. Oral Implants Res. 2011, 22, 840–849.
30) Kulterer, B.; Friedl, G.; Jandrositz, A.; Sanchez-cabo, F.; Prokesch, A.; Paar, C.; Scheideler, M.; Windhager, R.; Preisegger, K.; Trajanoski, Z. Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast di erentiation. BMC Genom. 2007, 8, 70.
31) Lai, H.-C.; Zhuang, L.-F.; Zhang, Z.-Y.;Wieland, M.; Liu, X. Bone apposition around two different sandblasted, large-grit and acid-etched implant surfaces at sites with coronal circumferential defects: An experimental study in dogs. Clin. Oral Implants Res. 2009, 20, 247–253.
32) Li, B.; Liu, X.; Meng, F.; Chang, J.; Ding, C. Preparation and antibacterial properties of plasma sprayed nano-titania/silver coatings. Mater. Chem. Phys. 2009, 118, 99–104.
33) Souza, J.C.M.; Sordi, M.B.; Kanazawa, M.; Ravindran, S.; Henriques, B.; Silva, F.S.; Aparicio, C.; Cooper, L.F. Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomater. 2019, 94, 112–131.
34) Alves, S.A.; Patel, S.B.; Sukotjo, C.; Mathew, M.T.; Filho, P.N.; Celis, J.-P.; Rocha1, L.A.; Shokuhfar, T. Synthesis of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: A promising strategy for an effcient biofunctional implant surface. Appl. Surf. Sci. 2016, 399, 682–701.
35) Albrektsson, T. Resonance frequency and removal torque analysis of implants with turned and anodized surface oxides. Clin. Oral Implants Res. 2002, 13, 252–259.
36) Grotberg, J.; Hamlekhan, A.; Butt, A.; Patel, S.; Royhman, D.; Shokuhfar, T.; Sukotjo, C.; Takoudis, C.; Mathew, M.T. Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 59, 677–689.
37) Ma, M.; Liu, J.; Wu, Z.; Zheng, X.; Hu, X.; Li, X. Progress of studies on fabrication of TiO2 nanotube arrays on Ti or Ti alloys by anodization. Adv. Mater. Res. 2014, 941–944, 441–444.
38) Shin, D.H.; Shokuhfar, T.; Choi, C.K.; Lee, S.-H.; Friedrich, C. Wettability changes of TiO2 nanotube surfaces. Nanotechnology 2011, 22, 315704.
39) Beltrán-Partida, E.; Moreno-Ulloa, A.; Valdez-Salas, B.; Velasquillo, C.; Carrillo, M.; Escamilla, A.; Valdez, E.; Villarreal, F. Improved osteoblast and chondrocyte adhesion and viability by surface-modified Ti6Al4V alloy with anodized TiO2 nanotubes using a super-oxidative solution. Materials (Basel) 2015, 8, 867–883.
40) Beltrán-Partida, E.; Valdez-Salas, B.; Escamilla, A.; Curiel, M.; Valdez-Salas, E.; Nedev, N.; Bastidas, J.M. Disinfection of titanium dioxide nanotubes using super-oxidized water decrease bacterial viability without disrupting osteoblast behavior. Mater. Sci. Eng. C 2016, 60, 239–245.
41) Li, H.; Cui, Q.; Feng, B.; Wang, J.; Lu, X.; Weng, J. Antibacterial activity of TiO2 nanotubes: Influence of crystal phase, morphology and Ag deposition. Appl. Surf. Sci. 2013, 284, 179–183.
42) Liu,W.; Su, P.; Iii, A.G.; Chen, S.;Wang, N.;Wang, J.; Li, H.; Zhang, Z. Optimizing stem cell functions and antibacterial properties of TiO2 nanotubes incorporated with ZnO nanoparticles: Experiments and modeling. Int. J. Nanomed. 2015, 10, 1997–2019.
43) Quirynen, M.; Van Assche, N. RCT comparing minimally with moderately rough implants. Part 2: Microbial observations. Clin. Oral Implants Res. 2012, 23, 625–634.
44) Wang, N.; Li, H.; Lü, W.; Li, J.; Wang, J.; Zhang, Z.; Liu, Y. E. Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs. Biomaterials 2011, 32, 6900–6911.
45) Su, E.P.; Justin, D.F.; Pratt, C.R.; Sarin, V.K. Effects of titanium nanotubes on the osseointegration, cell differentiation, mineralisation and antibacterial properties of orthopaedic implant surfaces. Bone Jt. J. 2018,100, 9–16.
46) Ma, M.; Liu, J.; Wu, Z.; Zheng, X.; Hu, X.; Li, X. Progress of studies on fabrication of TiO2 nanotube arrays on Ti or Ti alloys by anodization. Adv. Mater. Res. 2014, 941–944, 441–444.
47) Salou, L.; Hoornaert, A.; Louarn, G.; Layrolle, P. Enhanced osseointegration of titanium implants with nanostructured surfaces: An experimental study in rabbits. Acta Biomater. 2015, 11, 494–502.
48) vonWilmowsky, C.; Bauer, S.; Roedl, S.; Neukam, F.W.; Schmuki, P.; Schlegel, K.A. The diameter of anodic TiO2 nanotubes affects bone formation and correlates with the bone morphogenetic protein-2 expression in vivo. Clin. Oral Implants Res. 2012, 23, 359–366.
49) H. Chouirfa, H. Bouloussa, V. Migonney, C. Falentin-Daudré, Review of titanium surface modification techniques and coatings for antibacterial applications, Acta Biomaterialia, Volume 83, 2019, Pages 37-54, ISSN 1742-7061.
50) Lu X, Wu Z, Xu K, Wang X, Wang S, Qiu H, Li X and Chen J (2021) Multifunctional Coatings of Titanium Implants Toward Promoting Osseointegration and Preventing Infection: Recent Developments. Front. Bioeng. Biotechnol. 9:783816. doi: 10.3389/fbioe.2021.783816.
51) Thukkaram M., Cools P., Nikiforov A., Rigole P., Coenye T., Van Der Voort P., Du Laing G., Vercruysse C., Declercq H., Morent R., et al. Antibacterial activity of a porous Silver doped Titanium coating on Titanium substrates synthesized by plasma electrolytic oxidation. Appl. Surf. Sci. 2020;500:144235. doi: 10.1016/J.APSUSC.2019.144235.
52) Oleshko O., Liubchak I., Husak Y., Korniienko V., Yusupova A., Oleshko T., Banasiuk R., Szkodo M., Matros-Taranets I., Kazek-Kęsik A., et al. In Vitro Biological Characterization of Silver-Doped Anodic Oxide Coating on Titanium. Materials. 2020;13:4359. doi: 10.3390/ma13194359.
53) Sergi R., Bellucci D., Candidato R.T., Lusvarghi L., Bolelli G., Pawlowski L., Candiani G., Altomare L., De Nardo L., Cannillo V. Bioactive Zn-doped hydroxyapatite coatings and their antibacterial efficacy against Escherichia coli and Staphylococcus aureus. Surf. Coat. Technol. 2018;352:84–91. doi: 10.1016/J.SURFCOAT.2018.08.017.
54) Zhou J., Wang X. The osteogenic, anti-oncogenic and antibacterial activities of Selenium-doped Titanium dioxide coatings on Titanium. Surf. Coat. Technol. 2020;403:126408. doi: 10.1016/J.SURFCOAT.2020.126408.
55) Zhao Q., Yi L., Jiang L., Ma Y., Lin H., Dong J. Surface functionalization of Titanium with zinc/Strontium-doped Titanium dioxide microporous coating via microarc oxidation. Nanomedicine. 2019;16:149–161. doi: 10.1016/J.NANO.2018.12.006.
56) Ciobanu G., Harja M. Bismuth-doped nanohydroxyapatite coatings on Titanium implants for improved radiopacity and antimicrobial activity. Nanomaterials. 2019;9:1696. doi: 10.3390/nano9121696.
57) Zhang X., Huang Y., Wang B., Chang X., Yang H., Lan J., Wang S., Qiao H., Lin H., Han S. A functionalized Sm/Sr doped Titanium nanotube array on Titanium implant enables exceptional bone-implant integration and also self-antibacterial activity. Ceram. Int. 2020;46:14796–14807. doi: 10.1016/j.ceramint.2020.03.004.
58) Dong J., Fang D., Zhang L., Shan Q., Huang Y. Gallium-doped TiO2 nanotubes elicit anti-bacterial efficacy in vivo against Escherichia coli and Staphylococcus aureus biofilm. Materialia. 2019;5:100209. doi: 10.1016/J.MTLA.2019.100209.
59) Batebi K., Abbasi Khazaei B., Afshar A. Characterization of sol-gel derived Silver/fluor-hydroxyapatite composite coatings on Titanium substrate. Surf. Coat. Technol. 2018;352:522–528. doi: 10.1016/J.SURFCOAT.2018.08.021.
60) Ohtsu N., Kakuchi Y., Ohtsuki T. Antibacterial effect of Zinc oxide/hydroxyapatite coatings prepared by chemical solution deposition. Appl. Surf. Sci. 2018;445:596–600. doi: 10.1016/J.APSUSC.2017.09.101.
61) Panda S., Behera B.P., Bhutia S.K., Biswas C.K., Paul S. Rare transition metal doped hydroxyapatite coating prepared via microwave irradiation improved corrosion resistance, biocompatibility and anti-biofilm property of Titanium alloy. J. Alloys Compd. 2022;918:165662. doi: 10.1016/j.jallcom.2022.165662.
62) Ciobanu G., Harja M. Cerium-doped hydroxyapatite/collagen coatings on Titanium for bone implants. Ceram. Int. 2019;45:2852–2857. doi: 10.1016/j.ceramint.2018.07.290.
63) Yamaguchi S., Le P.T.M., Shintani S.A., Takadama H., Ito M., Ferraris S., Spriano S. Iodine-loaded calcium titanate for bone repair with sustainable antibacterial activity prepared by solution and heat treatment. Nanomaterials. 2021;11:2199. doi: 10.3390/nano11092199.
64) Camargo S.E.A., Roy T., Iv P.H.C., Fares C., Ren F., Clark A.E., Esquivel-Upshaw J.F. Novel coatings to minimize bacterial adhesion and promote osteoblast activity for Titanium implants. J. Funct. Biomater. 2020;11:42. doi: 10.3390/jfb11020042.
65) Humayun A., Luo Y., Mills D.K. Electrophoretic deposition of gentamicin-loaded znhnts-chitosan on Titanium. Coatings. 2020;10:944. doi: 10.3390/coatings10100944.
66) He L.-J., Hao J.-C., Dai L., Zeng R.-C., Li S.-Q. Layer-by-layer assembly of gentamicin-based antibacterial multilayers on Ti alloy. Mater. Lett. 2020;261:127001. doi: 10.1016/j.matlet.2019.127001.
67) Chen S.-T., Chien H.-W., Cheng C.-Y., Huang H.-M., Song T.-Y., Chen Y.-C., Wu C.-H., Hsueh Y.-H., Wang Y.-H., Ou S.-F. Drug-release dynamics and antibacterial activities of chitosan/cefazolin coatings on Ti implants. Prog. Org. Coat. 2021;159:106385. doi: 10.1016/j.porgcoat.2021.106385.
68) Sun J., Liu X., Lyu C., Hu Y., Zou D., He Y.-S., Lu J. Synergistic antibacterial effect of graphene-coated Titanium loaded with levofloxacin. Colloids Surf. B Biointerfaces. 2021;208:112090. doi: 10.1016/j.colsurfb.2021.112090.
69) Zarghami V., Ghorbani M., Pooshang Bagheri K., Shokrgozar M.A. Melittin antimicrobial peptide thin layer on bone implant chitosan-antibiotic coatings and their bactericidal properties. Mater. Chem. Phys. 2021;263:124432. doi: 10.1016/j.matchemphys.2021.124432.
70) Guo C., Cui W., Wang X., Lu X., Zhang L., Li X., Li W., Zhang W., Chen J. Poly-l-lysine/Sodium Alginate Coating Loading NanoSilver for Improving the Antibacterial Effect and Inducing Mineralization of Dental Implants. ACS Omega. 2020;5:10562–10571. doi: 10.1021/acsomega.0c00986.
71) Wu S., Xu J., Zou L., Luo S., Yao R., Zheng B., Liang G., Wu D., Li Y. Long-lasting renewable antibacterial porous polymeric coatings enable Titanium biomaterials to prevent and treat peri-implant infection. Nat. Commun. 2021;12:3303. doi: 10.1038/s41467-021-23069-0.
72) Kaleli-Can G., Özgüzar H.F., Kahriman S., Türkal M., Göçmen J.S., Yurtçu E., Mutlu M. Improvement in antimicrobial properties of Titanium by diethyl phosphite plasma-based surface modification. Mater. Today Commun. 2020;25:101565. doi: 10.1016/j.mtcomm.2020.101565.
73) Peng J., Liu P., Peng W., Sun J., Dong X., Ma Z., Gan D., Liu P., Shen J. Poly(hexamethylene biguanide) (PHMB) as high-efficiency antibacterial coating for Titanium substrates. J. Hazard. Mater. 2021;411:125110. doi: 10.1016/j.jhazmat.2021.125110.
74) Atefyekta S., Pihl M., Lindsay C., Heilshorn S.C., Andersson M. Antibiofilm elastin-like polypeptide coatings: Functionality, stability, and selectivity. Acta Biomater. 2019;83:245–256. doi: 10.1016/j.actbio.2018.10.039.
75) Pihl M., Galli S., Jimbo R., Andersson M. Osseointegration and antibacterial effect of an antimicrobial peptide releasing mesoporous TiO2 implant. J. Biomed. Mater. Res. B Appl. Biomater. 2021;109:1787–1795. doi: 10.1002/jbm.b.34838.
76) Zhang L., Xue Y., Gopalakrishnan S., Li K., Han Y., Rotello V.M. Antimicrobial Peptide-Loaded Pectolite Nanorods for Enhancing Wound-Healing and Biocidal Activity of Titanium. ACS Appl. Mater. Interfaces. 2021;13:28764–28773. doi: 10.1021/acsami.1c04895.
77) Lin J., Hu J., Wang W., Liu K., Zhou C., Liu Z., Kong S., Lin S., Deng Y., Guo Z. Thermo and light-responsive strategies of smart Titanium-containing composite material surface for enhancing bacterially anti-adhesive property. Chem. Eng. J. 2021;407:125783. doi: 10.1016/j.cej.2020.125783.
78) Zhang F., Hu Q., Wei Y., Meng W., Wang R., Liu J., Nie Y., Luo R., Wang Y., Shen B. Surface modification of Titanium implants by pH-Responsive coating designed for Self-Adaptive antibacterial and promoted osseointegration. Chem. Eng. J. 2022;435:134802. doi: 10.1016/J.CEJ.2022.134802.
79) Pavlović M.R.P., Stanojević B.P., Pavlović M.M., Mihailović M.D., Stevanović J.S., Panić V.V., Ignjatović N.L. Anodizing/anaphoretic electrodeposition of nano-calcium phosphate/chitosan lactate multifunctional coatings on Titanium with advanced corrosion resistance, bioactivity, and antibacterial properties. ACS Biomater. Sci. Eng. 2021;7:3088–3102. doi: 10.1021/acsbiomaterials.1c00035.
80) Chen J., Shi X., Zhu Y., Chen Y., Gao M., Gao H., Liu L., Wang L., Mao C., Wang Y. On-demand storage and release of antimicrobial peptides using Pandora’s box-like nanotubes gated with a bacterial infection-responsive polymer. Theranostics. 2020;10:109–122. doi: 10.7150/thno.38388.
81) Zhang G., Yang Y., Shi J., Yao X., Chen W., Wei X., Zhang X., Chu P.K. Near-infrared light II-assisted rapid biofilm elimination platform for bone implants at mild temperature. Biomaterials. 2021;269:120634. doi: 10.1016/j.biomaterials.2020.120634.
How to Cite
Singh, A., Sarkar, A., Pokarram, S. S., & Chaturvedi, T. P. (2023). A Comprehensive Review of Surface Coatings for enhancement of Anti-Microbial and Anti-Corrosive Properties of Titanium Implant Surface. UNIVERSITY JOURNAL OF DENTAL SCIENCES, 9(3). https://doi.org/10.21276/ujds.2023.9.3.26